Integral Closures of Cohen-macaulay Monomial Ideals
نویسنده
چکیده
The purpose of this paper is to present a family of CohenMacaulay monomial ideals such that their integral closures have embedded components and hence are not Cohen-Macaulay.
منابع مشابه
Combinatorial Characterizations of Generalized Cohen-macaulay Monomial Ideals
We give a generalization of Hochster’s formula for local cohomologies of square-free monomial ideals to monomial ideals, which are not necessarily square-free. Using this formula, we give combinatorial characterizations of generalized Cohen-Macaulay monomial ideals. We also give other applications of the generalized Hochster’s formula.
متن کاملCohen-Macaulay properties of square-free monomial ideals
In this paper we study simplicial complexes as higher dimensional graphs in order to produce algebraic statements about their facet ideals. We introduce a large class of square-free monomial ideals with Cohen-Macaulay quotients, and a criterion for the Cohen-Macaulayness of facet ideals of simplicial trees. Along the way, we generalize several concepts from graph theory to simplicial complexes.
متن کاملStanley Decompositions and Partionable Simplicial Complexes
We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.
متن کاملStanley Decompositions and Partitionable Simplicial Complexes
We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.
متن کاملSequentially Cohen-macaulay Monomial Ideals of Embedding Dimension Four
Let I be a monomial ideal of the polynomial ring S = K[x1, . . . , x4] over a field K. Then S/I is sequentially Cohen-Macaulay if and only if S/I is pretty clean. In particular, if S/I is sequentially Cohen-Macaulay then I is a Stanley ideal.
متن کامل